El 23 de marzo de 1749 nacía en Beaumont-en-Auge, un pequeño pueblo de Normandía, el que más tarde sería conocido como el Newton Francés: Pierre-Simon Laplace. ¡Y qué apelativo más adecuado para un hombre que desde pequeño fue soberbio, calculador, adulador y, también es justo decirlo, muy inteligente! ¿Qué por qué digo esas lindezas del él? Seguid leyendo y lo descubriréis.
La familia de Pierre-Simon era humilde, aunque no pobre. Su madre era granjera y su padre un comerciante de sidra, con lo cual podían permitirse que su hijo accediese a algunos estudios y así lo hizo. Desde los 7 a los 16 años fue alumno de la escuela de benedictinos de su ciudad natal donde comenzó a formarse para ser sacerdote, cumpliendo así el deseo de su padre. De hecho, a los 16 años, se matriculó en la universidad de Caen, una ciudad cercana, con la intención de titularse en teología. No obstante, durante los tres años que pasó en Caen descubrió que tenía un talento especial para las matemáticas y a los 19 años decidió trasladarse a París, donde estaban todos los científicos franceses más relevantes de la época.
Trasladarse y vivir en París hasta que consiguiese un empleo, iba a suponer unos costes que su familia no podía permitirse. Así que, para conseguir el dinero, se le ocurrió una idea “original” a la par que mezquina: se ganó la amistad y el afecto de un vecino acaudalado, a quien no paró de halagar y elogiar, hasta que lo cameló para que le costease el viaje y la estancia. Además, le consiguió unas cartas de recomendación con las que se pondría a disposición del matemático D’Alembert, con el fin de que este le pudiese conseguir un trabajo.
A su llegada a París, lo primero que hizo fue ir a visitar a D’Alembert para entregarle sus cartas de recomendación, pero, claro, ¡no recibiría D’Alembert cartas de recomendación todos los días! Aquellas eran unas cuantas más de un chico del campo. Las ignoró. Unos días más tarde, Pierre volvió a llamar a la puerta de la casa de D’Alembert a ver si había leído sus cartas y quería conocerlo, pero nada. D’Alembert no le recibiría ese día tampoco. Bueno, pues nada, lo intentaría otro día, a ver si había más suerte. Así estuvo durante un tiempo y viendo que aquello no tenía buena pinta, decidió cambiar de estrategia: escribió un trabajo sobre los principios de la mecánica y se lo envió a D’Alembert. Esta vez estaba seguro de que sí le recibiría porque sólo un matemático podía apreciar, entender y valorar el trabajo de otro matemático. Así fue. D’Alembert quedó totalmente impresionado con el talento matemático de Laplace y esta vez fue él el que solicitó que Pierre fuese a visitarle. Nada más verlo D’Alembert dijo: No necesitáis más presentación que la recomendación de vuestro trabajo. ¡Vaya, hombre! ¡Y Laplace dorándole la píldora a su vecino para conseguir las cartas de recomendación! ¡Menos mal que eso no le costaba trabajo!
D’Alembert se convirtió en el protector de Pierre y le consiguió una plaza de profesor en la Academia Militar de Artillería de París, donde enseñaría geometría y trigonometría a los cadetes de las mejores familias francesas.
Con un trabajo y sin problemas económicos Laplace pudo dedicarse más de lleno a las matemáticas y comenzó a realizar investigaciones sobre ecuaciones diferenciales, cálculo integral, mecánica celeste, astronomía física y movimientos planetarios. En 1770 salieron a la luz las primeras publicaciones que recogían sus resultados tanto en matemática pura como aplicada, lo que le hizo ganar un gran prestigio.
Los artículos más importantes trataban sobre los movimientos de los planetas y explicaban algunos fenómenos que el modelo de Newton no lo hacía: aparentemente Júpiter y la Luna se estaban continuamente acelerando y Saturno parecía que se frenaba poco a poco. Si estos movimientos continuaban indefinidamente, Júpiter se saldría del Sistema Solar, Saturno caería sobre el Sol y la Luna sobre La Tierra y, sin embargo, eso no ocurría. Cuando se le preguntó a Newton sobre esto su respuesta fue que Dios estaba actuando de forma permanente y directa sobre el universo y que era Él el que impedía que hubiese una catástrofe. Dios se encargaba de poner orden. Es más, creía que nadie podría calcular la evolución de todos los astros. Sin embargo, Laplace sí pudo y para ello tuvo en cuenta las perturbaciones que sufrían los cuerpos celestes. Laplace demostró que la aceleración de Júpiter y la de la Luna, así como el frenado de Saturno eran movimientos periódicos con unos periodos muy largos (de unos 1 000 años) y que, por tanto, no eran movimientos indefinidos. Eran las posiciones relativas de Júpiter y Saturno con respecto al Sol, y de la Luna y La Tierra con respecto al Sol, las que provocaban esas variaciones periódicas. En consecuencia, el Sistema Solar era estable y se autorregulaba. No hay ninguna intervención divina que impida que el Sistema Solar colapse.
En 1771, quiso ingresar como miembro de la Academia de las Ciencias de París, pero, a pesar de haber comenzado a tener éxitos científicos, no fue admitido. No obstante, no cejó en su empeño y al año siguiente lo volvió a intentar, obteniendo el mismo resultado. Esta vez se molestó un poco más que el año anterior, ya que él se creía el mejor matemático de Francia y no entendía que otro candidato ocupara su lugar cuando sólo le superaba en un aspecto: la edad. ¡Nuestro Pierre no necesitaba abuela!
En 1773, ¡por fin!, gracias a algunos hilos que movieron D’Alembert y Lagrange, fue admitido como miembro de una academia: la Academia de Ciencias de Berlín; y también fue nombrado profesor adjunto en la Academia de París. Esto le supuso un puesto dentro del mundillo científico francés –aunque no se relajó y siguió publicando de una manera muy prolífica– y un aumento de ingresos. Además, no dejó su puesto como profesor en la Academia Militar de Artillería de París y en 1784 fue nombrado miembro del Tribunal del Cuerpo Real de Artillería, lo que le permitió comenzar a codearse con los altos oficiales del gobierno.
Por las fechas en las que nos estamos moviendo, los últimos años del reinado de Luis XVI, ¿quién creéis que pudo pasar por la Academia Militar de Artillería de París para recibir formación? ¡Efectivamente! Napoleón Bonaparte. Laplace fue profesor de Napoleón en 1785, cuando este era un cadete de 16 años. Allí nació una “amistad” que… ¡Uy! Que casi hago un spoiler.
Durante la década de 1790, Laplace no mostró ningún interés por la política y estuvo inmerso en sus investigaciones y en los trabajos que llevó el comité que ideó el nuevo sistema métrico decimal. De hecho, él fue uno de los científicos que defendió que la unidad fundamental de medida de longitud debía ser definida en función de la longitud del cuadrante del meridiano terrestre, y no en función de la circunferencia del Ecuador. Sus razonamientos llevaron a definir el metro como la diezmillonésima parte de la distancia media del Polo Norte al Ecuador. Definición que a los que hicimos la EGB nos sonará.
En 1793 los republicanos expulsaron a Laplace y a otros científicos como Lavoisier y Coulomb del comité del sistema métrico decimal porque entendían que las responsabilidades que tenían sólo podían ser ejercidas por hombres que apoyasen a la República y odiasen a la Monarquía y como ellos no se habían definido… ¡A la calle! La situación se volvió tan tensa que Pierre llegó a temer por su cabeza –ya sabemos cómo se las gastaban los franceses en aquella época– y huyó de París a la ciudad vecina de Melun. Allí se empadronaron, él, su mujer Marie Charlotte de Courty de Romanges, hija de un burgués acomodado de Besançon, con quien se había casado en 1788, y sus dos hijos Charles-Émile y Sophie-Suzanne. Lavoisier no cambió de domicilio y terminó sin cabeza en 1794. ¡Bravo por Laplace y su prevención!
El primer volumen de la obra culmen de Laplace, la Mecánica Celeste, apareció publicado en 1799. Esta obra es un compendio de cinco volúmenes que recogen todo el conocimiento astronómico de la época desde un punto de vista totalmente analítico y que no sólo destaca por su contenido, sino por el modo en el que está escrito y por la calidad de sus dibujos.
Ese mismo año Napoleón, aquel cadete al que Laplace había dado clase cuando era un adolescente de 16 años, fue nombrado Primer Cónsul de la República (por cierto, en 1802 sería proclamado cónsul vitalicio y en 1804 Emperador de los Franceses. Una carrera meteórica en la que os recomiendo profundizar.) y cuando formó su gobierno se acordó de aquel profesor que tuvo en la Academia: designó a Laplace ministro del Interior. A Pierre el nombramiento como ministro le duró sólo seis semanas y si os preguntáis el motivo, Napoleón lo dejó claro cuando escribió sus memorias: Laplace quería llevar el espíritu de los infinitesimales a la administración. Es decir, era demasiado meticuloso y no actuaba con celeridad cada vez que se enfrentaba a un problema político, entreteniéndose en pulir todos los detalles. Lo que Napoleón no dice en sus memorias es que igual él también se quiso aprovechar de Laplace y no sólo éste fue el que quiso medrar. Laplace gozaba de un gran prestigio científico y el que un matemático de su talla ocupase un puesto en el gobierno igual hacía que el resto de científicos viera con buenos ojos los movimientos políticos de Napoleón y lo apoyasen. Para compensar a Laplace después de su destitución, Bonaparte lo nombró primero senador, después presidente del Senado y, por último, conde del Imperio. Como podéis suponer esto convirtió a Laplace en un hombre muy rico. En “pago” a tales nombramientos, Pierre dedicó el tercer tomo de la Mecánica Celeste y la Teoría Analítica de las Probabilidades a Napoleón, refiriéndose a él como pacificador de Europa. Al leer Napoleón dicho tomo de la Mecánica Celeste comentó que no había visto ninguna mención a Dios, a lo que Laplace contestó: Señor, ¡no hay necesidad de tal hipótesis! Frase que ha pasado a la historia, pero de la que, como suele ocurrir, nadie está seguro de que se pronunciase.
Tras el desastre ocurrido en Rusia, Laplace se aleja poco a poco de Napoleón y se acerca poco a poco a los borbones. De hecho, como miembro del Senado, votó a favor de la restauración de la monarquía y del exilio de Napoleón a la isla de Elba; y cuando Luis XVIII llega al poder en 1814, cambia las dedicatorias de sus libros, no fuese a ser que el rey se ofendiera, pensara que era partidario de Napoleón y decidiera cortarle la cabeza. En 1815 vuelve Napoleón y Laplace huye de París – no hay que ser muy inteligente para suponer que Napoleón no estaría contento con los vaivenes de su exprofesor–. Tras la derrota de Waterloo y el destierro definitivo de Napoleón a Santa Elena, Laplace vuelve a convertirse en un defensor incondicional de la monarquía, consiguiendo que Luis XVIII le conceda el título de marqués –que, por si no lo sabéis, es más que conde– en 1817. ¿Vais entendiendo los piropos que le dediqué al principio? ¡Será chaquetero! Se pasó la vida cambiando de bando según quien estuviera en el poder con el fin de conseguir que su cabeza no se separara del cuerpo y poder continuar con su trabajo científico.
Laplace es uno de los mayores exponentes de la filosofía determinista, que afirma que todo fenómeno está prefijado de una manera necesaria por las circunstancias en que se produce, y, por tanto, ninguno de los actos de nuestra voluntad es libre, sino que están obligatoriamente preestablecidos. No obstante, esto no le supone ningún conflicto a la hora de realizar sus estudios sobre probabilidad ya que para Laplace lo azaroso no es más que una medida de nuestra ignorancia, porque si tuviésemos todos los detalles relativos al lanzamiento de una moneda, por ejemplo (fuerza de lanzamiento, velocidad del viento, características de la superficie sobre la que caiga, …), podríamos plantear y resolver las ecuaciones que definiesen el lanzamiento y determinar el resultado. Como no podemos conocer todos esos datos, nos conformamos con calcular las probabilidades. Así, en 1780 comenzó a trabajar en este tema y la primera edición de la Teoría Analítica de Probabilidades fue publicada en 1812. Fue tal su éxito que en 1814 publicó el Ensayo filosófico sobre las probabilidades, que resultaba más sencillo de leer y asequible para más personas. El Ensayo comienza con el enunciado de las siete probabilidades:
- La probabilidad es la razón entre el número de casos favorables y el de todos los casos posibles. (La conocida Ley de Laplace: P(A)=Número de casos favorables al suceso A / Número de casos posibles del experimento.)
- Si no lo son, habrá que determinar primero sus posibilidades respectivas, cuya justa valoración constituye uno de los puntos más delicados de la teoría de azar.
- Si los eventos son independientes unos de otros, la probabilidad de la existencia de su conjunto es el producto de sus probabilidades particulares.
- Cuando dos eventos dependen uno de otro, la probabilidad del evento compuesto es el producto de la probabilidad del primero por la probabilidad de que, habiendo sucedido éste, tenga lugar el otro.
- Si se calculan a priori la probabilidad de un evento acaecido y la probabilidad de un evento compuesto de éste y de otro que se espera, la segunda probabilidad dividida por la primera constituirá la probabilidad del evento esperado, inferida del observado.
- Cada una de las causas a la que puede atribuirse un acontecimiento observado se halla indicada con una verosimilitud tanto mayor cuanto más probable sea que ocurra el acontecimiento si se supone existente dicha causa.
- La probabilidad de un acontecimiento futuro es la suma de los productos de la probabilidad de cada causa, extraída del acontecimiento observado, por la probabilidad de que, en caso de que exista dicha causa, el acontecimiento futuro tenga lugar.
y contiene muchos problemas, la gran mayoría de ellos relacionados con el lanzamiento de monedas y con cajas y bolas. Veamos un ejemplo de estos últimos:
Una urna contiene cuatro bolas negras o blancas, pero no todas del mismo color. Se extrae una de esas bolas, de color blanco, y se la vuelve a meter en la urna para proceder de nuevo a otras extracciones. Se desea saber cuál es la probabilidad de no sacar más que bolas negras en las cuatro extracciones siguientes.
En 1825, Laplace contrae una enfermedad que le causa un debilitamiento extremo y que le acompañó hasta su muerte el 5 de marzo de 1827, a tan sólo 17 días de cumplir 78 años. En su funeral Fourier diría: Laplace nació para perfeccionarlo todo, para profundizar en todo, para hacer retroceder todas las fronteras, para resolver lo que creíamos irresoluble.
Esta entrada participa en la Edición 1 del Año 12 del Carnaval de Matemáticas cuya anfitriona es MoniAlus a través de su blog El mundo en un chip.